Pictured Key to some algae of southern Australia: strap-like & narrow-leaved red algae
(algae with narrow, flat branches)

Red Algae. With some 800 species, many of which are endemic (found nowhere else), southern Australia is a major centre of diversity for red algae. Classification is based on detailed reproductive features. Many species unrelated reproductively have similar vegetative form or shape, making identification very difficult if the technical systematic literature is used.

This key Fortunately, we can use this apparent problem to advantage - common shapes or morphologies will allow you to sort some algae directly into the level of Genus or Family and so shortcut a systematic search through intricate and often unavailable reproductive features. The pictured key below uses this artificial way of starting the search for a name. It’s designed to get you to a possible major group in a hurry. Then you can proceed to the appropriate fact sheets to verify identifications.

Scale: the coin used as a scale is 24 mm or almost 1” wide. Microscope images of algae are usually blue stained.

This key is restricted to algae with

- compressed or flat, strap-shaped blades of similar size throughout the plant (about 5-15 mm wide)
- internal structure of many cells, often equal-sided (“parenchymatous”)
- side branches often forked (dichotomous)

Excluded are algae where

- branches are cylindrical in cross-section and only a few mm in width. (See “Narrow-branched red algae.”)
- small side branches form a regular, feathery (pinnate) pattern. (See the pictured key of the same name.)
- the whole plant is plate-shaped or broad-bladed (20+ mm wide). See the pictured key: “Broad-bladed red algae.”
- the internal construction consists of strings of cells (threads or meshes). This may be obscured by the later development of additional (corticating) cells and can then only be seen clearly at plant tips or located by investigating cross sections microscopically. (Find these in other pictured keys, such as “Filamentous red algae: Master Key” or “…. Red mesh-algae”)

1a. plants filmy, almost transparent, blade edges may be only 1-2 cells thick, some blades with a thicker mid-rib and faint branched veins. Branching from blade edges or from mid-ribs. Figs 6, 7.

……………………………………. 2.

1b. plants not filmy, some paper thin but not semi-transparent; slimy, gristly, (cartilaginous) or firm in texture, smooth or with a rough surface due to a coating of sponge or a crusty layer of bryozoan animals

……………………………………… 4.

Fig. 1: Laurencia elata, with compressed branches but < 5mm wide: excluded from this key. (see the pictured key: “Laurencia and Chondrophycus”)

Fig. 2: Hypnea, with narrow, cylindrical branches: excluded from this key. (see the pictured key: “Narrow branched red algae”)

Fig. 3: Sarcothalia radula, with broad blades: excluded from this key. (see the pictured key: “Broad-bladed red algae”)

Fig. 4: Gigartina pinnata, with broad main branches and pinnate side branches: excluded from this key. (see the pictured key: “Feathery flat-branched red algae”)

Fig. 5: Thurietia quercifolia, blades with chains of cells in rings: excluded from this key. (see the pictured key: “Red mesh-algae”)

Fig. 6: Hypoglossum harveyanum in the Delesseriaceae, filmy, strap-like fronds with a mid-rib, side branches arise from the mid-ribs

Fig. 7: Haraldiophyllum notii in the Delesseriaceae, filmy fronds, mid-rib absent, flat-branched, spore patches embedded in blades

Algae Revealed R N Baldock, State Herbarium S Australia, November 2013: strap-like & narrow-leaved red algae
2a. blades long and narrow (linear), narrower basally; fertile structures delicate, protruding …………… 3.

2b. blades broader, lance-, leaf-shaped, or forked; fertile structures embedded in blades. Figs 6, 7 (previous page) …… See “Southern Australian Groups at a glance: Delesseriaceae”

3a. plants grow on the feathery red alga Ballia; blades 1-cell thick, older blades with irregular shorter blades from mid-ribs; cells in rows, 6-sided; sporangia in small, dense linear structures (stichidia) along mid-ribs. Figs 8, 9. ……….. Sonderella linearis
 Family: Rohodometaceae
 Tribe: Sonderelleae

3b. plants grow on rock or other algae, have a short stalk, are delicate, often quickly disintegrating after collection; mature female structures (cystocarps) on short stalks, protruding in dense masses from blade surfaces. Figs 10, 11. ……… Sarcomenia delesserioides
 Family: Sarcomeniaceae

4a. blades thin, often only 1-2 cells thick; branching usually regular; fertile structures embedded in blades. Figs 6, 7. (previous page) …………………… See “Southern Australian Groups at a glance: Delesseriaceae”

4b. blades thicker, branching long and narrow (linear), forked or irregular; fertile structures protruding from the blade surface or edge …………… 5.

5a. plants slimy. (example, Fig. 12) See “Pictured key: slimy/mucilaginous algae”

5b. plants firm, surfaces smooth, or rough, (may be covered with sponge or animal growth), not slimy …………………… 6.

6a. blades rough, coated with sponge, or a scale of microscopic bryozoan animals …………………… 7.

6b. blades smooth, or with small, restricted patches of sponge or other animal growth …………………… 10.

7a. blades coated with sponges …………………… 8.

7b. blades coated with a scaly bryozoan colony (usually of Bathypora nitens), blunt tips are in-rolled. Where exposed, blade cells are rhomboid-shaped and in spreading rows (chevrons) (see Fig. 25). Amansia 3 spp …………………… 9.

Fig. 8: Sonderella linearis on Ballia callitricha (host, ho)

Fig. 9: Sonderella linearis, cells 6-sided, in rows. Linear sporangial structures (stichidia, stich) occur along the mid-rib

Fig. 10: Sarcomenia delesserioides. Insert: detail of blades

Fig. 11: Sarcomenia delesserioides, side branch with clusters of stalked cystocarps

Fig. 12: Gloiophyllis barkeriae
8a. blades long and narrow (linear), edged with minute bumps, twisted, ≈ 10 mm wide; side branches arise from mid-ribs; tips often yellow to greenish under water. Figs 13-15.

(Previous page)

.............. Osmundaria prolifera
(Also in “Pic. keys “sponge-covered red algae”)

8b. blades spatula-shaped, edges smooth, ≈ 5 mm wide, not twisted; sponge grows between flat surface growths facing forwards. Figs 16-19.

............... Epiglossum smithiae

9a. edges smooth, except for clusters of reproductive structures on marginal teeth when fertile. Figs 20-22, 25.

................... Amansia pinnatifida

9b. edges with alternating, very short incurved branches. Figs 23, 24.

..................... Amansia serrata

(the third Amansia sp. L. mamillaris is a rare W Australian species, with broad blades – see the separate Fact Sheet)
10a. blade edge prominently saw-toothed ... 11.
10b. saw-toothed edges absent, although minute teeth may be present12.

11a. blades spirally twisted, teeth single
 Figs 26, 27.Vidalia spiralis
 Family: Rhodomelaceae; Tribe: Amansieae
11b. blades not spirally twisted, teeth may divide into 3’s or appear single if
 blade is denuded. Dictyomenia
 4 spp (3 with strap-like blades)
 Family: Rhodomelaceae; Tribe: Pterosiphonieae
 See Algae at a glance: Dictyomenia

12a. blade tops in-rolled, notched, a microscopic pointed tip in each notch.
 Faint diamond pattern of inner cells present. See Figs 36, 37.
 ... 16.
 Lenormandia 5 spp (next page)
 Family: Rhodomelaceae; Tribe: Amansieae
12b. blade tops flat, not in-rolled, notches absent 13.

13a. blade edges show numerous lines of dividing cells (see Fig. 31); tufts of
 branched hairs (trichoblasts) often on blade surfaces. Pollexfenia 3 spp
 ... 14
 Family: Rhodomelaceae; Tribe: Pterosiphonieae
 See also “Algae at a glance: Pollexfenia”
13b. not as above .. 19.

14a. plants small, 20-50 mm tall, on Sea nymph (Amphibolis) stems., Fig. 30.
 ... Pollexfenia crispata
14b. plants on rock or algae, 100-250 mm tall .. 15.

15a. mid-ribs absent. Figs 31, 34.
 ... Pollexfenia pedicellata
15b. mid-ribs prominent. Figs 32, 33.
 ... Pollexfenia lobata
16a. blades 20-40 mm wide, plants often over 200 mm tall 17.
16b. blades 10-20 mm wide, plants 50–150 mm tall 18.

17a. blades red-brown, mid-ribs *conspicuous*, thick; basal stalk long.
 Figs 35-37. *Lenormandia muelleri*

17b. blades dark red, mid-ribs *inconspicuous*; basal stalk short.
 Fig. 38. *Lenormandia spectabilis*

18a. blade edges *without* teeth; branches and reproductive structures grow from blade mid-ribs. Figs 39, 40. *Lenormandia pardalis*

18b. blade edges *minutely toothed*; branches and reproductive structure from blade edges. Figs 41, 42. *Lenormandia marginata* (a fifth *Lenormandia* sp. *L. latifolia*, can be found in the Pictured key: Broad-bladed red algae)

Fig. 35: *Lenormandia muelleri*, mid-ribs *conspicuous*, thick; basal stalk long
Fig. 36: *Lenormandia muelleri*, notched blade, diamond shape cell patterns
Fig. 37: *Lenormandia muelleri*, detail of the minute pointed tip

Fig. 39: *Lenormandia pardalis*, blades arising from blade mid-ribs; dark female structures (cystocarps) scattered on the surface

Fig. 40: *Lenormandia pardalis*, minute pointed tip in the notch of a blade, radiating cell rows, (diamond cell-patterns not yet established)

Fig. 41: *Lenormandia marginata*, blades (slightly overlapping) blades with diamond cell patterns and sporangial structures (stichidia) along blade edges
19a. blades in surface view show rings (rosettes) of small cells around large inner cells. 20.
19b. rosettes not apparent 22.

20a. blade edges smooth; tissue squash shows large cells mixed with many fine threads; female structures (cystocarps) form pustules on blade surfaces; sporangia in pyramidal stacks of 4 (tetrahedral). Figs 42-44.

...................... Leptosomia rosea
Family: Rhodymeniaceae

20b. blade edges smooth or fringed, single threads in cores may appear as veins in some species; cystocarps on blade surface or edges; sporangia divided into stacks of 4 (zonate) 21.

21a. blade edges fringed with minute outgrowths; female structures (cystocarps) fringe blades. Figs 45-48

...................... Craspedocarpus 4 spp
Family: Cystocloniaceae

See “… Groups at a glance: Cystocloniaceae”

21b. blade edges smooth or fringed; cystocarps on blade surfaces or edges; cell rings (rosettes) and veins only weakly developed. Figs 49-52.

...................... Rhodophyllis 3 spp
Family: Cystocloniaceae

See “… Groups at a glance: Cystocloniaceae”

Fig. 42: Leptosomia rosea on seagrass
Fig. 43: Leptosomia rosea, surface view of cell rings (rosettes)
Fig. 44: Leptosomia rosea, tissue squash, fine threads amongst other cells
Fig. 45: Craspedocarpus venosus, surface view of clearly defined cell rosettes, veins
Fig. 46: Craspedocarpus ramentaceus, fringed with short blades
Fig. 47: Craspedocarpus blepharicarpus
Fig. 48: Craspedocarpus blepharicarpus, female structures (cystocarps) on blade edge
Fig. 49: Rhodophyllis multipartita, cross section with large zonate tetrasporangium (t sp)
Fig. 50: Rhodophyllis membranacea
Fig. 51: Rhodophyllis volans
Fig. 52: Rhodophyllis membranacea, weakly developed cell rosettes; veins
22a. Cross sections of blades, or tissue squashes show a core (medulla) of fine threads, outer layers (cortex) of very small cells. ………………… 23.

22b. Cross sections of blades show a core of large oval-shaped cells, grading to surface smaller cells ………………… 24.

(next page)

23a. Tissue squashes show spidery (ganglionic) cells amongst extremely fine threads; outer layers (cortex) of chains of outward-facing cells; female structures (cystocarps) sunken in blade surfaces. Figs 53-57.

……………… Cryptonemia 5 spp

Family: Halymeniaceae

See “Algal groups at a glance: Halymeniaceae”

23b. Ganglionic cells absent; core threads with many arms, cortex of an inner, dense cell layer and distinct outer layer of outward-facing cells; cystocarps along blade edges. Figs 58-60. …………… Sarcodia marginata

Family: Sarcodiaceae

Algae Revealed R N Baldock, State Herbarium S Australia, November 2013: strap-like & narrow-leaved red algae
24a. plants **leathery**, forked or with a flat, thick, broad, central main branch (axis) .. 25.

24b. plants **softer** and flexible, main branches regularly forked or with a wide main branch and short side-branches forked or toothed .. 26.

25a. plants usually upright (except *Curdiea crassa*); female structures (cystocarps) form pimple-like lumps near blade margins. Figs 57-62. .. 25b. *Curdiea* sp

See “*Southern Australian groups at a glance: Gracilariaceae*”

25b. plants grow flat on rocks, attached by short outgrowths (haptera); cystocarps generally scattered on blade surfaces. Figs 63-66.

Tylopus obtusatus
Family: *Dicranemataceae*

Fig. 59: *Curdiea angustata*, cystocarps along blade edges

Fig. 60: *Curdiea crassa* lies flat on rocks

Fig. 61: *Curdiea crassa*, edge of the blade lifted to reveal a white layer of bryozoan animals on the underside

Fig. 62: *Curdiea angustata*

Fig. 63: *Tylotus obtusatus*

Fig. 64: *Tylotus obtusatus*, root-like attachment structures

Fig. 65: *Tylotus obtusatus*, peg-like attachment structures on the blade underside

Fig. 66: *Tylotus obtusatus*, cystocarps on the blade surface
26a. blades forked, short side branches absent. Figs 67-74. See “Southern Australian groups at a glance: Rhodymeniaceae”

26b. blades with short, small side branches 27.

Fig. 67: *Rhodymenia obtusa* (Some specimens collected from Victoria and Tasmania and placed in this species include a hidden, new species, *Rhodymenia wilsonis)*

Fig. 68: *Halopeltis cuneata* (= *Rhodymenia cuneata* and *Rhodymenia halymenioides* in the Marine Benthic Flora)

Fig. 69: *Halopeltis australis* (= *Rhodymenia australis* in the Marine Benthic Flora)

Fig. 67: *Rhodymenia obtusa* (Some specimens collected from Victoria and Tasmania and placed in this species include a hidden, new species, *Rhodymenia wilsonis)*

Fig. 68: *Halopeltis cuneata* (= *Rhodymenia cuneata* and *Rhodymenia halymenioides* in the Marine Benthic Flora)

Fig. 67: *Rhodymenia obtusa* (Some specimens collected from Victoria and Tasmania and placed in this species include a hidden, new species, *Rhodymenia wilsonis)*

Fig. 68: *Halopeltis cuneata* (= *Rhodymenia cuneata* and *Rhodymenia halymenioides* in the Marine Benthic Flora)

Fig. 69: *Halopeltis australis* (= *Rhodymenia australis* in the Marine Benthic Flora)

Fig. 70: *Halopeltis verrucosa* (= *Rhodymenia verrucosa* in the Marine Benthic Flora), with a basal coating of whitish bryozoans

Fig. 71: *Halopeltis verrucosa* (some specimens collected from Victoria and Tasmania and placed in this species include a hidden, new species, *Rhodymenia wilsonis)*

Fig. 72: *Halopeltis verrucosa*, warty cystocarp on the blade surface

Fig. 73: *Halopeltis verrucosa*, surface view of large tetrasporangia amongst small cortex cells

Fig. 74: *Rhodymenia leptophylla*
27a. short side branches fringing the main branch (axis) are narrow, usually unbranched themselves. Figs 75-79.
 Rhodymenia prolificans, Rhodymenia stenoglossa

27b. side branches toothed or branched

................................. 28.

28a. side branches usually spiky, arranged in sets of 2’s, 3’s, 4’s and 5’s; some may be serrated on the outer edge. Tetrasporangia in fingerlike structures tufted in branch angles. Core in cross section **without** obscure threads. Figs 80-82.
 See “*Southern Australian groups at a glance: Plocamium*”

28b. side branches not as above, ends usually forked, rounded or horn-like. Tetrasporangia scattered, embedded in the blade. Core in cross section with obscure threads wrapped around large rounded cells (see Figs 92, 93. **Callophyllis, Austrophyllis** (next 2 pages)

Fig. 75: *Rhodymenia prolificans*

Fig. 76: *Rhodymenia prolificans*, detail of numerous, extra, short side branches fringing the blades

Fig. 77: *Rhodymenia prolificans*, cross section

Fig. 78: *Rhodymenia stenoglossa*

Fig. 79: *Rhodymenia stenoglossa*, detail of narrow blades arising from a common base

Fig. 80: *Plocamium mertensii*

Fig. 81: *Plocamium preissianum*, tufts of reproductive structures in branch angles (arrowed)

Fig. 82: *Plocamium angustum*
29a. branching fairly regular; edges of main blades largely smooth, tips lance-shaped and parallel

... 30.

29b. branching more irregular, edges of main blades (axes) with small antler-like or spiny side prongs, tips spiny, or spreading 31.

30a. blades 10-50 mm wide, forked about every 10-30 mm; female reproductive structures (cystocarps) pimple-like, scattered throughout blades. Figs 83, 84.

......................... _Austrophyllis harveyana_

30b. blades < 10 mm broad, cystocarps restricted to branch tips. Figs 85, 86.

......................... _Callophyllis cervicornis_

31a. plants large, robust, commonly >150 mm tall; tips rounded. and 2 mm wide. Figs 87, 88, 95.

......................... _Callophyllis lambertii_

31b. plants thinner, more delicate, usually < 150 mm tall; tips pointed, ≤ 1 mm wide for some distance. Figs 89-94.

......................... _Callophyllis rangifera_

Austrophyllis alcicornis (similar vegetatively these 2 spp are separated on female reproductive features – see individual Fact Sheets and Fig. 94)
Fig. 93: *Austrophyllis harveyana*, cross section showing large, thick-walled core cells ringed by delicate threads (arrowed)

Fig. 94: *Austrophyllis alcicornis*, cross section of young female stage, showing heavily stained, amoeba-like cells (arrowed) involved in reproduction, a feature separating the genus from *Callophyllis*

Fig. 95: *Callophyllis lambertii*, cross section showing large core cells ringed by delicate threads (arrowed)